Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Privacy-Preserving Computation Based on Additive Secret Sharing (2009.05356v2)

Published 11 Sep 2020 in cs.CR

Abstract: The emergence of cloud computing provides a new computing paradigm for users -- massive and complex computing tasks can be outsourced to cloud servers. However, the privacy issues also follow. Fully homomorphic encryption shows great potential in privacy-preserving computation, yet it is not ready for practice. At present, secure multiparty computation (MPC) remains mainly approach to deal with sensitive data. In this paper, following the secret sharing based MPC paradigm, we propose a secure 2-party computation scheme, in which cloud servers can securely evaluate functions with high efficiency. We first propose the multiplicative secret sharing (MSS) based on typical additive secret sharing (ASS). Then, we design protocols to switch shared secret between MSS and ASS, based on which a series of protocols for comparison and nearly all of the elementary functions are proposed. We prove that all the proposed protocols are Universally Composable secure in the honest-but-curious model. Finally, we will show the remarkable progress of our protocols on both communication efficiency and functionality completeness.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.