Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The PREVENTION Challenge: How Good Are Humans Predicting Lane Changes? (2009.05331v2)

Published 11 Sep 2020 in cs.CV

Abstract: While driving on highways, every driver tries to be aware of the behavior of surrounding vehicles, including possible emergency braking, evasive maneuvers trying to avoid obstacles, unexpected lane changes, or other emergencies that could lead to an accident. In this paper, human's ability to predict lane changes in highway scenarios is analyzed through the use of video sequences extracted from the PREVENTION dataset, a database focused on the development of research on vehicle intention and trajectory prediction. Thus, users had to indicate the moment at which they considered that a lane change maneuver was taking place in a target vehicle, subsequently indicating its direction: left or right. The results retrieved have been carefully analyzed and compared to ground truth labels, evaluating statistical models to understand whether humans can actually predict. The study has revealed that most participants are unable to anticipate lane-change maneuvers, detecting them after they have started. These results might serve as a baseline for AI's prediction ability evaluation, grading if those systems can outperform human skills by analyzing hidden cues that seem unnoticed, improving the detection time, and even anticipating maneuvers in some cases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube