Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

CasGCN: Predicting future cascade growth based on information diffusion graph (2009.05152v1)

Published 10 Sep 2020 in cs.SI and cs.LG

Abstract: Sudden bursts of information cascades can lead to unexpected consequences such as extreme opinions, changes in fashion trends, and uncontrollable spread of rumors. It has become an important problem on how to effectively predict a cascade' size in the future, especially for large-scale cascades on social media platforms such as Twitter and Weibo. However, existing methods are insufficient in dealing with this challenging prediction problem. Conventional methods heavily rely on either hand crafted features or unrealistic assumptions. End-to-end deep learning models, such as recurrent neural networks, are not suitable to work with graphical inputs directly and cannot handle structural information that is embedded in the cascade graphs. In this paper, we propose a novel deep learning architecture for cascade growth prediction, called CasGCN, which employs the graph convolutional network to extract structural features from a graphical input, followed by the application of the attention mechanism on both the extracted features and the temporal information before conducting cascade size prediction. We conduct experiments on two real-world cascade growth prediction scenarios (i.e., retweet popularity on Sina Weibo and academic paper citations on DBLP), with the experimental results showing that CasGCN enjoys a superior performance over several baseline methods, particularly when the cascades are of large scale.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.