Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Advanced unembedding techniques for quantum annealers (2009.05028v3)

Published 10 Sep 2020 in quant-ph and cs.ET

Abstract: The D-Wave quantum annealers make it possible to obtain high quality solutions of NP-hard problems by mapping a problem in a QUBO (quadratic unconstrained binary optimization) or Ising form to the physical qubit connectivity structure on the D-Wave chip. However, the latter is restricted in that only a fraction of all pairwise couplers between physical qubits exists. Modeling the connectivity structure of a given problem instance thus necessitates the computation of a minor embedding of the variables in the problem specification onto the logical qubits, which consist of several physical qubits "chained" together to act as a logical one. After annealing, it is however not guaranteed that all chained qubits get the same value (-1 or +1 for an Ising model, and 0 or 1 for a QUBO), and several approaches exist to assign a final value to each logical qubit (a process called "unembedding"). In this work, we present tailored unembedding techniques for four important NP-hard problems: the Maximum Clique, Maximum Cut, Minimum Vertex Cover, and Graph Partitioning problems. Our techniques are simple and yet make use of structural properties of the problem being solved. Using Erd\H{o}s-R\'enyi random graphs as inputs, we compare our unembedding techniques to three popular ones (majority vote, random weighting, and minimize energy). We demonstrate that our proposed algorithms outperform the currently available ones in that they yield solutions of better quality, while being computationally equally efficient.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.