Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Backtracking algorithms for constructing the Hamiltonian decomposition of a 4-regular multigraph (2009.04742v3)

Published 10 Sep 2020 in cs.DS and math.CO

Abstract: We consider a Hamiltonian decomposition problem of partitioning a regular graph into edge-disjoint Hamiltonian cycles. It is known that verifying vertex non-adjacency in the 1-skeleton of the symmetric and asymmetric traveling salesperson polytopes is NP-complete. On the other hand, a sufficient condition for two vertices to be non-adjacent can be formulated as a combinatorial problem of finding a second Hamiltonian decomposition of a 4-regular multigraph. We present two backtracking algorithms for constructing a second Hamiltonian decomposition and verifying vertex non-adjacency: an algorithm based on a simple path extension and an algorithm based on the chain edge fixing procedure. Based on the results of computational experiments for undirected multigraphs, both backtracking algorithms lost to the known general variable neighborhood search heuristics. However, for directed multigraphs, the algorithm based on chain fixing of edges showed results comparable to heuristics on instances with an existing solution and better results on infeasible instances where the Hamiltonian decomposition does not exist.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.