Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Backtracking algorithms for constructing the Hamiltonian decomposition of a 4-regular multigraph (2009.04742v3)

Published 10 Sep 2020 in cs.DS and math.CO

Abstract: We consider a Hamiltonian decomposition problem of partitioning a regular graph into edge-disjoint Hamiltonian cycles. It is known that verifying vertex non-adjacency in the 1-skeleton of the symmetric and asymmetric traveling salesperson polytopes is NP-complete. On the other hand, a sufficient condition for two vertices to be non-adjacent can be formulated as a combinatorial problem of finding a second Hamiltonian decomposition of a 4-regular multigraph. We present two backtracking algorithms for constructing a second Hamiltonian decomposition and verifying vertex non-adjacency: an algorithm based on a simple path extension and an algorithm based on the chain edge fixing procedure. Based on the results of computational experiments for undirected multigraphs, both backtracking algorithms lost to the known general variable neighborhood search heuristics. However, for directed multigraphs, the algorithm based on chain fixing of edges showed results comparable to heuristics on instances with an existing solution and better results on infeasible instances where the Hamiltonian decomposition does not exist.

Summary

We haven't generated a summary for this paper yet.