Momentum-based Gradient Methods in Multi-Objective Recommendation (2009.04695v3)
Abstract: Multi-objective gradient methods are becoming the standard for solving multi-objective problems. Among others, they show promising results in developing multi-objective recommender systems with both correlated and conflicting objectives. Classic multi-gradient~descent usually relies on the combination of the gradients, not including the computation of first and second moments of the gradients. This leads to a brittle behavior and misses important areas in the solution space. In this work, we create a multi-objective model-agnostic Adamize method that leverages the benefits of the Adam optimizer in single-objective problems. This corrects and stabilizes~the~gradients of every objective before calculating a common gradient descent vector that optimizes all the objectives simultaneously. We evaluate the benefits of Multi-objective Adamize on two multi-objective recommender systems and for three different objective combinations, both correlated or conflicting. We report significant improvements, measured with three different Pareto front metrics: hypervolume, coverage, and spacing. Finally, we show that the \textit{Adamized} Pareto front strictly dominates the previous one on multiple objective pairs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.