Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Universal Representations from Word to Sentence (2009.04656v1)

Published 10 Sep 2020 in cs.CL

Abstract: Despite the well-developed cut-edge representation learning for language, most language representation models usually focus on specific level of linguistic unit, which cause great inconvenience when being confronted with handling multiple layers of linguistic objects in a unified way. Thus this work introduces and explores the universal representation learning, i.e., embeddings of different levels of linguistic unit in a uniform vector space through a task-independent evaluation. We present our approach of constructing analogy datasets in terms of words, phrases and sentences and experiment with multiple representation models to examine geometric properties of the learned vector space. Then we empirically verify that well pre-trained Transformer models incorporated with appropriate training settings may effectively yield universal representation. Especially, our implementation of fine-tuning ALBERT on NLI and PPDB datasets achieves the highest accuracy on analogy tasks in different language levels. Further experiments on the insurance FAQ task show effectiveness of universal representation models in real-world applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.