Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Developing and Improving Risk Models using Machine-learning Based Algorithms (2009.04559v1)

Published 9 Sep 2020 in cs.LG and stat.ML

Abstract: The objective of this study is to develop a good risk model for classifying business delinquency by simultaneously exploring several machine learning based methods including regularization, hyper-parameter optimization, and model ensembling algorithms. The rationale under the analyses is firstly to obtain good base binary classifiers (include Logistic Regression ($LR$), K-Nearest Neighbors ($KNN$), Decision Tree ($DT$), and Artificial Neural Networks ($ANN$)) via regularization and appropriate settings of hyper-parameters. Then two model ensembling algorithms including bagging and boosting are performed on the good base classifiers for further model improvement. The models are evaluated using accuracy, Area Under the Receiver Operating Characteristic Curve (AUC of ROC), recall, and F1 score via repeating 10-fold cross-validation 10 times. The results show the optimal base classifiers along with the hyper-parameter settings are $LR$ without regularization, $KNN$ by using 9 nearest neighbors, $DT$ by setting the maximum level of the tree to be 7, and $ANN$ with three hidden layers. Bagging on $KNN$ with $K$ valued 9 is the optimal model we can get for risk classification as it reaches the average accuracy, AUC, recall, and F1 score valued 0.90, 0.93, 0.82, and 0.89, respectively.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.