Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CuratorNet: Visually-aware Recommendation of Art Images (2009.04426v2)

Published 9 Sep 2020 in cs.IR and cs.LG

Abstract: Although there are several visually-aware recommendation models in domains like fashion or even movies, the art domain lacks thesame level of research attention, despite the recent growth of the online artwork market. To reduce this gap, in this article we introduceCuratorNet, a neural network architecture for visually-aware recommendation of art images. CuratorNet is designed at the core withthe goal of maximizing generalization: the network has a fixed set of parameters that only need to be trained once, and thereafter themodel is able to generalize to new users or items never seen before, without further training. This is achieved by leveraging visualcontent: items are mapped to item vectors through visual embeddings, and users are mapped to user vectors by aggregating the visualcontent of items they have consumed. Besides the model architecture, we also introduce novel triplet sampling strategies to build atraining set for rank learning in the art domain, resulting in more effective learning than naive random sampling. With an evaluationover a real-world dataset of physical paintings, we show that CuratorNet achieves the best performance among several baselines,including the state-of-the-art model VBPR. CuratorNet is motivated and evaluated in the art domain, but its architecture and trainingscheme could be adapted to recommend images in other areas

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.