Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality (2009.04382v3)

Published 9 Sep 2020 in cs.LG, math.PR, and stat.ML

Abstract: Wasserstein distributionally robust optimization (DRO) aims to find robust and generalizable solutions by hedging against data perturbations in Wasserstein distance. Despite its recent empirical success in operations research and machine learning, existing performance guarantees for generic loss functions are either overly conservative due to the curse of dimensionality, or plausible only in large sample asymptotics. In this paper, we develop a non-asymptotic framework for analyzing the out-of-sample performance for Wasserstein robust learning and the generalization bound for its related Lipschitz and gradient regularization problems. To the best of our knowledge, this gives the first finite-sample guarantee for generic Wasserstein DRO problems without suffering from the curse of dimensionality. Our results highlight that Wasserstein DRO, with a properly chosen radius, balances between the empirical mean of the loss and the variation of the loss, measured by the Lipschitz norm or the gradient norm of the loss. Our analysis is based on two novel methodological developments that are of independent interest: 1) a new concentration inequality controlling the decay rate of large deviation probabilities by the variation of the loss and, 2) a localized Rademacher complexity theory based on the variation of the loss.

Citations (78)

Summary

We haven't generated a summary for this paper yet.