Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Spectral Submanifolds for Optimal Mode Selection in Model Reduction (2009.04232v1)

Published 9 Sep 2020 in math.DS and cs.CE

Abstract: Model reduction of large nonlinear systems often involves the projection of the governing equations onto linear subspaces spanned by carefully-selected modes. The criteria to select the modes relevant for reduction are usually problem-specific and heuristic. In this work, we propose a rigorous mode-selection criterion based on the recent theory of Spectral Submanifolds (SSM), which facilitates a reliable projection of the governing nonlinear equations onto modal subspaces. SSMs are exact invariant manifolds in the phase space that act as nonlinear continuations of linear normal modes. Our criterion identifies critical linear normal modes whose associated SSMs have locally the largest curvature. These modes should then be included in any projection-based model reduction as they are the most sensitive to nonlinearities. To make this mode selection automatic, we develop explicit formulas for the scalar curvature of an SSM and provide an open-source numerical implementation of our mode-selection procedure. We illustrate the power of this procedure by accurately reproducing the forced-response curves on three examples of varying complexity, including high-dimensional finite element models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.