Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Multiple F0 Estimation in Vocal Ensembles using Convolutional Neural Networks (2009.04172v1)

Published 9 Sep 2020 in eess.AS, cs.LG, and cs.SD

Abstract: This paper addresses the extraction of multiple F0 values from polyphonic and a cappella vocal performances using convolutional neural networks (CNNs). We address the major challenges of ensemble singing, i.e., all melodic sources are vocals and singers sing in harmony. We build upon an existing architecture to produce a pitch salience function of the input signal, where the harmonic constant-Q transform (HCQT) and its associated phase differentials are used as an input representation. The pitch salience function is subsequently thresholded to obtain a multiple F0 estimation output. For training, we build a dataset that comprises several multi-track datasets of vocal quartets with F0 annotations. This work proposes and evaluates a set of CNNs for this task in diverse scenarios and data configurations, including recordings with additional reverb. Our models outperform a state-of-the-art method intended for the same music genre when evaluated with an increased F0 resolution, as well as a general-purpose method for multi-F0 estimation. We conclude with a discussion on future research directions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.