Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

TanhSoft -- a family of activation functions combining Tanh and Softplus (2009.03863v1)

Published 8 Sep 2020 in cs.NE, cs.AI, cs.CV, and cs.LG

Abstract: Deep learning at its core, contains functions that are composition of a linear transformation with a non-linear function known as activation function. In past few years, there is an increasing interest in construction of novel activation functions resulting in better learning. In this work, we propose a family of novel activation functions, namely TanhSoft, with four undetermined hyper-parameters of the form tanh({\alpha}x+{\beta}e{{\gamma}x})ln({\delta}+ex) and tune these hyper-parameters to obtain activation functions which are shown to outperform several well known activation functions. For instance, replacing ReLU with xtanh(0.6ex)improves top-1 classification accuracy on CIFAR-10 by 0.46% for DenseNet-169 and 0.7% for Inception-v3 while with tanh(0.87x)ln(1 +ex) top-1 classification accuracy on CIFAR-100 improves by 1.24% for DenseNet-169 and 2.57% for SimpleNet model.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.