Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Cyclic Generative Adversarial Residual Convolutional Networks for Real Image Super-Resolution (2009.03693v1)

Published 7 Sep 2020 in eess.IV and cs.CV

Abstract: Recent deep learning based single image super-resolution (SISR) methods mostly train their models in a clean data domain where the low-resolution (LR) and the high-resolution (HR) images come from noise-free settings (same domain) due to the bicubic down-sampling assumption. However, such degradation process is not available in real-world settings. We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions, which is inspired by the recent success of CycleGAN in the image-to-image translation applications. We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation in an end-to-end manner. We demonstrate our proposed approach in the quantitative and qualitative experiments that generalize well to the real image super-resolution and it is easy to deploy for the mobile/embedded devices. In addition, our SR results on the AIM 2020 Real Image SR Challenge datasets demonstrate that the proposed SR approach achieves comparable results as the other state-of-art methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.