Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Self-Supervised Gait Encoding Approach with Locality-Awareness for 3D Skeleton Based Person Re-Identification (2009.03671v3)

Published 5 Sep 2020 in cs.CV and cs.LG

Abstract: Person re-identification (Re-ID) via gait features within 3D skeleton sequences is a newly-emerging topic with several advantages. Existing solutions either rely on hand-crafted descriptors or supervised gait representation learning. This paper proposes a self-supervised gait encoding approach that can leverage unlabeled skeleton data to learn gait representations for person Re-ID. Specifically, we first create self-supervision by learning to reconstruct unlabeled skeleton sequences reversely, which involves richer high-level semantics to obtain better gait representations. Other pretext tasks are also explored to further improve self-supervised learning. Second, inspired by the fact that motion's continuity endows adjacent skeletons in one skeleton sequence and temporally consecutive skeleton sequences with higher correlations (referred as locality in 3D skeleton data), we propose a locality-aware attention mechanism and a locality-aware contrastive learning scheme, which aim to preserve locality-awareness on intra-sequence level and inter-sequence level respectively during self-supervised learning. Last, with context vectors learned by our locality-aware attention mechanism and contrastive learning scheme, a novel feature named Constrastive Attention-based Gait Encodings (CAGEs) is designed to represent gait effectively. Empirical evaluations show that our approach significantly outperforms skeleton-based counterparts by 15-40% Rank-1 accuracy, and it even achieves superior performance to numerous multi-modal methods with extra RGB or depth information. Our codes are available at https://github.com/Kali-Hac/Locality-Awareness-SGE.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube