Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Hyperparameter Optimization via Sequential Uniform Designs (2009.03586v2)

Published 8 Sep 2020 in cs.LG, math.OC, and stat.ML

Abstract: Hyperparameter optimization (HPO) plays a central role in the automated machine learning (AutoML). It is a challenging task as the response surfaces of hyperparameters are generally unknown, hence essentially a global optimization problem. This paper reformulates HPO as a computer experiment and proposes a novel sequential uniform design (SeqUD) strategy with three-fold advantages: a) the hyperparameter space is adaptively explored with evenly spread design points, without the need of expensive meta-modeling and acquisition optimization; b) the batch-by-batch design points are sequentially generated with parallel processing support; c) a new augmented uniform design algorithm is developed for the efficient real-time generation of follow-up design points. Extensive experiments are conducted on both global optimization tasks and HPO applications. The numerical results show that the proposed SeqUD strategy outperforms benchmark HPO methods, and it can be therefore a promising and competitive alternative to existing AutoML tools.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)