Papers
Topics
Authors
Recent
2000 character limit reached

On Spectral Properties of Signed Laplacians with Connections to Eventual Positivity (2009.03581v1)

Published 8 Sep 2020 in eess.SY and cs.SY

Abstract: Signed graphs have appeared in a broad variety of applications, ranging from social networks to biological networks, from distributed control and computation to power systems. In this paper, we investigate spectral properties of signed Laplacians for undirected signed graphs. We find conditions on the negative weights under which a signed Laplacian is positive semidefinite via the Kron reduction and multiport network theory. For signed Laplacians that are indefinite, we characterize their inertias with the same framework. Furthermore, we build connections between signed Laplacians, generalized M-matrices, and eventually exponentially positive matrices.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.