Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Spectral Properties of Signed Laplacians with Connections to Eventual Positivity

Published 8 Sep 2020 in eess.SY and cs.SY | (2009.03581v1)

Abstract: Signed graphs have appeared in a broad variety of applications, ranging from social networks to biological networks, from distributed control and computation to power systems. In this paper, we investigate spectral properties of signed Laplacians for undirected signed graphs. We find conditions on the negative weights under which a signed Laplacian is positive semidefinite via the Kron reduction and multiport network theory. For signed Laplacians that are indefinite, we characterize their inertias with the same framework. Furthermore, we build connections between signed Laplacians, generalized M-matrices, and eventually exponentially positive matrices.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.