Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Local and Global Spatiotemporal Feature Aggregation for Blind Video Quality Assessment (2009.03411v1)

Published 7 Sep 2020 in eess.IV and cs.MM

Abstract: In recent years, deep learning has achieved promising success for multimedia quality assessment, especially for image quality assessment (IQA). However, since there exist more complex temporal characteristics in videos, very little work has been done on video quality assessment (VQA) by exploiting powerful deep convolutional neural networks (DCNNs). In this paper, we propose an efficient VQA method named Deep SpatioTemporal video Quality assessor (DeepSTQ) to predict the perceptual quality of various distorted videos in a no-reference manner. In the proposed DeepSTQ, we first extract local and global spatiotemporal features by pre-trained deep learning models without fine-tuning or training from scratch. The composited features consider distorted video frames as well as frame difference maps from both global and local views. Then, the feature aggregation is conducted by the regression model to predict the perceptual video quality. Finally, experimental results demonstrate that our proposed DeepSTQ outperforms state-of-the-art quality assessment algorithms.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)