Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

A Review on Near Duplicate Detection of Images using Computer Vision Techniques (2009.03224v1)

Published 7 Sep 2020 in cs.CV

Abstract: Nowadays, digital content is widespread and simply redistributable, either lawfully or unlawfully. For example, after images are posted on the internet, other web users can modify them and then repost their versions, thereby generating near-duplicate images. The presence of near-duplicates affects the performance of the search engines critically. Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from digital images. The main application of computer vision is image understanding. There are several tasks in image understanding such as feature extraction, object detection, object recognition, image cleaning, image transformation, etc. There is no proper survey in literature related to near duplicate detection of images. In this paper, we review the state-of-the-art computer vision-based approaches and feature extraction methods for the detection of near duplicate images. We also discuss the main challenges in this field and how other researchers addressed those challenges. This review provides research directions to the fellow researchers who are interested to work in this field.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.