Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Channel-wise Alignment for Adaptive Object Detection (2009.02862v1)

Published 7 Sep 2020 in cs.CV

Abstract: Generic object detection has been immensely promoted by the development of deep convolutional neural networks in the past decade. However, in the domain shift circumstance, the changes in weather, illumination, etc., often cause domain gap, and thus performance drops substantially when detecting objects from one domain to another. Existing methods on this task usually draw attention on the high-level alignment based on the whole image or object of interest, which naturally, cannot fully utilize the fine-grained channel information. In this paper, we realize adaptation from a thoroughly different perspective, i.e., channel-wise alignment. Motivated by the finding that each channel focuses on a specific pattern (e.g., on special semantic regions, such as car), we aim to align the distribution of source and target domain on the channel level, which is finer for integration between discrepant domains. Our method mainly consists of self channel-wise and cross channel-wise alignment. These two parts explore the inner-relation and cross-relation of attention regions implicitly from the view of channels. Further more, we also propose a RPN domain classifier module to obtain a domain-invariant RPN network. Extensive experiments show that the proposed method performs notably better than existing methods with about 5% improvement under various domain-shift settings. Experiments on different task (e.g. instance segmentation) also demonstrate its good scalability.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.