Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hybrid Differentially Private Federated Learning on Vertically Partitioned Data (2009.02763v1)

Published 6 Sep 2020 in cs.LG, cs.AI, and stat.ML

Abstract: We present HDP-VFL, the first hybrid differentially private (DP) framework for vertical federated learning (VFL) to demonstrate that it is possible to jointly learn a generalized linear model (GLM) from vertically partitioned data with only a negligible cost, w.r.t. training time, accuracy, etc., comparing to idealized non-private VFL. Our work builds on the recent advances in VFL-based collaborative training among different organizations which rely on protocols like Homomorphic Encryption (HE) and Secure Multi-Party Computation (MPC) to secure computation and training. In particular, we analyze how VFL's intermediate result (IR) can leak private information of the training data during communication and design a DP-based privacy-preserving algorithm to ensure the data confidentiality of VFL participants. We mathematically prove that our algorithm not only provides utility guarantees for VFL, but also offers multi-level privacy, i.e. DP w.r.t. IR and joint differential privacy (JDP) w.r.t. model weights. Experimental results demonstrate that our work, under adequate privacy budgets, is quantitatively and qualitatively similar to GLMs, learned in idealized non-private VFL setting, rather than the increased cost in memory and processing time in most prior works based on HE or MPC. Our codes will be released if this paper is accepted.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.