Finite-Alphabet MMSE Equalization for All-Digital Massive MU-MIMO mmWave Communication (2009.02747v1)
Abstract: We propose finite-alphabet equalization, a new paradigm that restricts the entries of the spatial equalization matrix to low-resolution numbers, enabling high-throughput, low-power, and low-cost hardware equalizers. To minimize the performance loss of this paradigm, we introduce FAME, short for finite-alphabet minimum mean-square error (MMSE) equalization, which is able to significantly outperform a naive quantization of the linear MMSE matrix. We develop efficient algorithms to approximately solve the NP-hard FAME problem and showcase that near-optimal performance can be achieved with equalization coefficients quantized to only 1-3 bits for massive multi-user multiple-input multiple-output (MU-MIMO) millimeter-wave (mmWave) systems. We provide very-large scale integration (VLSI) results that demonstrate a reduction in equalization power and area by at least a factor of 3.9x and 5.8x, respectively.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.