Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detection Defense Against Adversarial Attacks with Saliency Map (2009.02738v1)

Published 6 Sep 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision and can cause the deep models misbehave. Such phenomenon may lead to severely inestimable consequences in the safety and security critical applications. Existing defenses are trend to harden the robustness of models against adversarial attacks, e.g., adversarial training technology. However, these are usually intractable to implement due to the high cost of re-training and the cumbersome operations of altering the model architecture or parameters. In this paper, we discuss the saliency map method from the view of enhancing model interpretability, it is similar to introducing the mechanism of the attention to the model, so as to comprehend the progress of object identification by the deep networks. We then propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples. Our experimental results of some representative adversarial attacks on common datasets including ImageNet and popular models show that our method can detect all the attacks with high detection success rate effectively. We compare it with the existing state-of-the-art technique, and the experiments indicate that our method is more general.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.