A multi-view approach for Mandarin non-native mispronunciation verification (2009.02573v2)
Abstract: Traditionally, the performance of non-native mispronunciation verification systems relied on effective phone-level labelling of non-native corpora. In this study, a multi-view approach is proposed to incorporate discriminative feature representations which requires less annotation for non-native mispronunciation verification of Mandarin. Here, models are jointly learned to embed acoustic sequence and multi-source information for speech attributes and bottleneck features. Bidirectional LSTM embedding models with contrastive losses are used to map acoustic sequences and multi-source information into fixed-dimensional embeddings. The distance between acoustic embeddings is taken as the similarity between phones. Accordingly, examples of mispronounced phones are expected to have a small similarity score with their canonical pronunciations. The approach shows improvement over GOP-based approach by +11.23% and single-view approach by +1.47% in diagnostic accuracy for a mispronunciation verification task.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.