Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A multi-view approach for Mandarin non-native mispronunciation verification (2009.02573v2)

Published 5 Sep 2020 in eess.AS and cs.SD

Abstract: Traditionally, the performance of non-native mispronunciation verification systems relied on effective phone-level labelling of non-native corpora. In this study, a multi-view approach is proposed to incorporate discriminative feature representations which requires less annotation for non-native mispronunciation verification of Mandarin. Here, models are jointly learned to embed acoustic sequence and multi-source information for speech attributes and bottleneck features. Bidirectional LSTM embedding models with contrastive losses are used to map acoustic sequences and multi-source information into fixed-dimensional embeddings. The distance between acoustic embeddings is taken as the similarity between phones. Accordingly, examples of mispronounced phones are expected to have a small similarity score with their canonical pronunciations. The approach shows improvement over GOP-based approach by +11.23% and single-view approach by +1.47% in diagnostic accuracy for a mispronunciation verification task.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.