Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lorentzian Peak Sharpening and Sparse Blind Source Separation for NMR Spectroscopy (2009.02200v1)

Published 4 Sep 2020 in eess.SP, cs.NA, and math.NA

Abstract: In this paper, we introduce a preprocessing technique for blind source separation (BSS) of nonnegative and overlapped data. For Nuclear Magnetic Resonance spectroscopy (NMR), the classical method of Naanaa and Nuzillard (NN) requires the condition that source signals to be non-overlapping at certain locations while they are allowed to overlap with each other elsewhere. NN's method works well with data signals that possess stand alone peaks (SAP). The SAP does not hold completely for realistic NMR spectra however. Violation of SAP often introduces errors or artifacts in the NN's separation results. To address this issue, a preprocessing technique is developed here based on Lorentzian peak shapes and weighted peak sharpening. The idea is to superimpose the original peak signal with its weighted negative second order derivative. The resulting sharpened (narrower and taller) peaks enable NN's method to work with a more relaxed SAP condition, the so called dominant peaks condition (DPS), and deliver improved results. To achieve an optimal sharpening while preserving the data nonnegativity, we prove the existence of an upper bound of the weight parameter and propose a selection criterion. Numerical experiments on NMR spectroscopy data show satisfactory performance of our proposed method.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)