Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Linguistically inspired morphological inflection with a sequence to sequence model (2009.02073v1)

Published 4 Sep 2020 in cs.CL

Abstract: Inflection is an essential part of every human language's morphology, yet little effort has been made to unify linguistic theory and computational methods in recent years. Methods of string manipulation are used to infer inflectional changes; our research question is whether a neural network would be capable of learning inflectional morphemes for inflection production in a similar way to a human in early stages of language acquisition. We are using an inflectional corpus (Metheniti and Neumann, 2020) and a single layer seq2seq model to test this hypothesis, in which the inflectional affixes are learned and predicted as a block and the word stem is modelled as a character sequence to account for infixation. Our character-morpheme-based model creates inflection by predicting the stem character-to-character and the inflectional affixes as character blocks. We conducted three experiments on creating an inflected form of a word given the lemma and a set of input and target features, comparing our architecture to a mainstream character-based model with the same hyperparameters, training and test sets. Overall for 17 languages, we noticed small improvements on inflecting known lemmas (+0.68%) but steadily better performance of our model in predicting inflected forms of unknown words (+3.7%) and small improvements on predicting in a low-resource scenario (+1.09%)

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.