Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Perspective Semantic Information Retrieval (2009.01938v1)

Published 3 Sep 2020 in cs.IR and cs.CL

Abstract: Information Retrieval (IR) is the task of obtaining pieces of data (such as documents or snippets of text) that are relevant to a particular query or need from a large repository of information. While a combination of traditional keyword- and modern BERT-based approaches have been shown to be effective in recent work, there are often nuances in identifying what information is "relevant" to a particular query, which can be difficult to properly capture using these systems. This work introduces the concept of a Multi-Perspective IR system, a novel methodology that combines multiple deep learning and traditional IR models to better predict the relevance of a query-sentence pair, along with a standardized framework for tuning this system. This work is evaluated on the BioASQ Biomedical IR + QA challenges.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.