Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sum-of-Squares Lower Bounds for Sherrington-Kirkpatrick via Planted Affine Planes (2009.01874v1)

Published 3 Sep 2020 in cs.CC and math.CO

Abstract: The Sum-of-Squares (SoS) hierarchy is a semi-definite programming meta-algorithm that captures state-of-the-art polynomial time guarantees for many optimization problems such as Max-$k$-CSPs and Tensor PCA. On the flip side, a SoS lower bound provides evidence of hardness, which is particularly relevant to average-case problems for which NP-hardness may not be available. In this paper, we consider the following average case problem, which we call the \emph{Planted Affine Planes} (PAP) problem: Given $m$ random vectors $d_1,\ldots,d_m$ in $\mathbb{R}n$, can we prove that there is no vector $v \in \mathbb{R}n$ such that for all $u \in [m]$, $\langle v, d_u\rangle2 = 1$? In other words, can we prove that $m$ random vectors are not all contained in two parallel hyperplanes at equal distance from the origin? We prove that for $m \leq n{3/2-\epsilon}$, with high probability, degree-$n{\Omega(\epsilon)}$ SoS fails to refute the existence of such a vector $v$. When the vectors $d_1,\ldots,d_m$ are chosen from the multivariate normal distribution, the PAP problem is equivalent to the problem of proving that a random $n$-dimensional subspace of $\mathbb{R}m$ does not contain a boolean vector. As shown by Mohanty--Raghavendra--Xu [STOC 2020], a lower bound for this problem implies a lower bound for the problem of certifying energy upper bounds on the Sherrington-Kirkpatrick Hamiltonian, and so our lower bound implies a degree-$n{\Omega(\epsilon)}$ SoS lower bound for the certification version of the Sherrington-Kirkpatrick problem.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.