Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Survival Estimation for Missing not at Random Censoring Indicators based on Copula Models (2009.01726v2)

Published 3 Sep 2020 in stat.ML and cs.LG

Abstract: In the presence of right-censored data with covariates, the conditional Kaplan-Meier estimator (also known as the Beran estimator) consistently estimates the conditional survival function of the random follow-up for the event of interest. However, a necessary condition is the unambiguous knowledge of whether each individual is censored or not, which may be incomplete in practice. We therefore propose a study of the Beran estimator when the censoring indicators are generic random variables and discuss necessary conditions for the efficiency of the Beran estimator. From this, we provide a new estimator for the conditional survival function with missing not at random (MNAR) censoring indicators based on a conditional copula model for the missingness mechanism. In addition to the theoretical results, we illustrate how the estimators work for small samples through a simulation study and show their practical applicability by analyzing synthetic and real data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.