Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Loss Weighting with Coefficient of Variations (2009.01717v2)

Published 3 Sep 2020 in cs.CV and cs.AI

Abstract: Many interesting tasks in machine learning and computer vision are learned by optimising an objective function defined as a weighted linear combination of multiple losses. The final performance is sensitive to choosing the correct (relative) weights for these losses. Finding a good set of weights is often done by adopting them into the set of hyper-parameters, which are set using an extensive grid search. This is computationally expensive. In this paper, we propose a weighting scheme based on the coefficient of variations and set the weights based on properties observed while training the model. The proposed method incorporates a measure of uncertainty to balance the losses, and as a result the loss weights evolve during training without requiring another (learning based) optimisation. In contrast to many loss weighting methods in literature, we focus on single-task multi-loss problems, such as monocular depth estimation and semantic segmentation, and show that multi-task approaches for loss weighting do not work on those single-tasks. The validity of the approach is shown empirically for depth estimation and semantic segmentation on multiple datasets.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.