Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph Representation Learning (2009.01674v1)

Published 3 Sep 2020 in cs.LG, cs.SI, and stat.ML

Abstract: Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous graph neural networks (GNN) require a large number of labeled nodes, which may not be accessible in real-world graph data. In this paper, we present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques. In CAGNN, we perform clustering on the node embeddings and update the model parameters by predicting the cluster assignments. Moreover, we observe that graphs often contain inter-class edges, which mislead the GNN model to aggregate noisy information from neighborhood nodes. We further refine the graph topology by strengthening intra-class edges and reducing node connections between different classes based on cluster labels, which better preserves cluster structures in the embedding space. We conduct comprehensive experiments on two benchmark tasks using real-world datasets. The results demonstrate the superior performance of the proposed model over existing baseline methods. Notably, our model gains over 7% improvements in terms of accuracy on node clustering over state-of-the-arts.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.