Papers
Topics
Authors
Recent
2000 character limit reached

Modification method for single-stage object detectors that allows to exploit the temporal behaviour of a scene to improve detection accuracy (2009.01617v1)

Published 3 Sep 2020 in cs.CV

Abstract: A simple modification method for single-stage generic object detection neural networks, such as YOLO and SSD, is proposed, which allows for improving the detection accuracy on video data by exploiting the temporal behavior of the scene in the detection pipeline. It is shown that, using this method, the detection accuracy of the base network can be considerably improved, especially for occluded and hidden objects. It is shown that a modified network is more prone to detect hidden objects with more confidence than an unmodified one. A weakly supervised training method is proposed, which allows for training a modified network without requiring any additional annotated data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.