Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A reduced order model for a stable embedded boundary parametrized Cahn-Hilliard phase-field system based on cut finite elements (2009.01596v4)

Published 3 Sep 2020 in math.NA and cs.NA

Abstract: In the present work, we investigate a cut finite element method for the parameterized system of second-order equations stemming from the splitting approach of a fourth order nonlinear geometrical PDE, namely the Cahn-Hilliard system. We manage to tackle the instability issues of such methods whenever strong nonlinearities appear and to utilize their flexibility of the fixed background geometry -- and mesh -- characteristic, through which, one can avoid e.g. in parametrized geometries the remeshing on the full order level, as well as, transformations to reference geometries on the reduced level. As a final goal, we manage to find an efficient global, concerning the geometrical manifold, and independent of geometrical changes, reduced order basis. The POD-Galerkin approach exhibits its strength even with pseudo-random discontinuous initial data verified by numerical experiments.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.