Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analysis of probing techniques for sparse approximation and trace estimation of decaying matrix functions (2009.01589v2)

Published 3 Sep 2020 in math.NA and cs.NA

Abstract: The computation of matrix functions $f(A)$, or related quantities like their trace, is an important but challenging task, in particular for large and sparse matrices $A$. In recent years, probing methods have become an often considered tool in this context, as they allow to replace the computation of $f(A)$ or $\text{tr}(f(A))$ by the evaluation of (a small number of) quantities of the form $f(A)v$ or $vTf(A)v$, respectively. These tasks can then efficiently be solved by standard techniques like, e.g., Krylov subspace methods. It is well-known that probing methods are particularly efficient when $f(A)$ is approximately sparse, e.g., when the entries of $f(A)$ show a strong off-diagonal decay, but a rigorous error analysis is lacking so far. In this paper we develop new theoretical results on the existence of sparse approximations for $f(A)$ and error bounds for probing methods based on graph colorings. As a by-product, by carefully inspecting the proofs of these error bounds, we also gain new insights into when to stop the Krylov iteration used for approximating $f(A)v$ or $vTf(A)v$, thus allowing for a practically efficient implementation of the probing methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.