Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A two level method for isogeometric discretizations (2009.01499v1)

Published 3 Sep 2020 in math.NA, cs.NA, and math.FA

Abstract: Isogeometric Analysis (IGA) is a computational technique for the numerical approximation of partial differential equations (PDEs). This technique is based on the use of spline-type basis functions, that are able to hold a global smoothness and allow to exactly capture a wide set of common geometries. The current rise of this approach has encouraged the search of fast solvers for isogeometric discretizations and nowadays this topic is full of interest. In this framework, a desired property of the solvers is the robustness with respect to both the polinomial degree $p$ and the mesh size $h$. For this task, in this paper we propose a two-level method such that a discretization of order $p$ is considered in the first level whereas the second level consists of a linear or quadratic discretization. On the first level, we suggest to apply one single iteration of a multiplicative Schwarz method. The choice of the block-size of such an iteration depends on the spline degree $p$, and is supported by a local Fourier analysis (LFA). At the second level one is free to apply any given strategy to solve the problem exactly. However, it is also possible to get an approximation of the solution at this level by using an $h-$multigrid method. The resulting solver is efficient and robust with respect to the spline degree $p$. Finally, some numerical experiments are given in order to demonstrate the good performance of the proposed solver.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.