Emergent Mind

Explainable Empirical Risk Minimization

(2009.01492)
Published Sep 3, 2020 in cs.LG and stat.ML

Abstract

The successful application of ML methods becomes increasingly dependent on their interpretability or explainability. Designing explainable ML systems is instrumental to ensuring transparency of automated decision-making that targets humans. The explainability of ML methods is also an essential ingredient for trustworthy artificial intelligence. A key challenge in ensuring explainability is its dependence on the specific human user ("explainee"). The users of machine learning methods might have vastly different background knowledge about machine learning principles. One user might have a university degree in machine learning or related fields, while another user might have never received formal training in high-school mathematics. This paper applies information-theoretic concepts to develop a novel measure for the subjective explainability of the predictions delivered by a ML method. We construct this measure via the conditional entropy of predictions, given a user feedback. The user feedback might be obtained from user surveys or biophysical measurements. Our main contribution is the explainable empirical risk minimization (EERM) principle of learning a hypothesis that optimally balances between the subjective explainability and risk. The EERM principle is flexible and can be combined with arbitrary machine learning models. We present several practical implementations of EERM for linear models and decision trees. Numerical experiments demonstrate the application of EERM to detecting the use of inappropriate language on social media.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.