Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Dexterous Grasping with Object-Centric Visual Affordances (2009.01439v2)

Published 3 Sep 2020 in cs.RO and cs.CV

Abstract: Dexterous robotic hands are appealing for their agility and human-like morphology, yet their high degree of freedom makes learning to manipulate challenging. We introduce an approach for learning dexterous grasping. Our key idea is to embed an object-centric visual affordance model within a deep reinforcement learning loop to learn grasping policies that favor the same object regions favored by people. Unlike traditional approaches that learn from human demonstration trajectories (e.g., hand joint sequences captured with a glove), the proposed prior is object-centric and image-based, allowing the agent to anticipate useful affordance regions for objects unseen during policy learning. We demonstrate our idea with a 30-DoF five-fingered robotic hand simulator on 40 objects from two datasets, where it successfully and efficiently learns policies for stable functional grasps. Our affordance-guided policies are significantly more effective, generalize better to novel objects, train 3 X faster than the baselines, and are more robust to noisy sensor readings and actuation. Our work offers a step towards manipulation agents that learn by watching how people use objects, without requiring state and action information about the human body. Project website: http://vision.cs.utexas.edu/projects/graff-dexterous-affordance-grasp

Citations (118)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.