Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multiscale dimension reduction for flow and transport problems in thin domain with reactive boundaries (2009.01422v1)

Published 3 Sep 2020 in math.NA and cs.NA

Abstract: In this paper, we consider flow and transport problems in thin domains. The mathematical model considered in the paper is described by a system of equations for velocity, pressure, and concentration, where the flow is described by the Stokes equations and the transport is described by an unsteady convection-diffusion equation with non-homogeneous boundary conditions on walls (reactive boundaries). We start with the finite element approximation of the problem on unstructured grids and use it as a reference solution for two and three-dimensional model problems. Fine grid approximation resolves complex geometries on the grid level and leads to a large discrete system of equations that is computationally expensive to solve. To reduce the size of the discrete systems, we develop a multiscale model reduction technique, where we construct local multiscale basis functions to generate a lower-dimensional model on a coarse grid. The proposed multiscale model reduction is based on the Discontinuous Galerkin Generalized Multiscale Finite Element Method (DG-GMsGEM). In DG-GMsFEM for flow problems, we start with constructing the snapshot space for each interface between coarse grid cells to capture possible flows. For the reduction of the snapshot space size, we perform a dimension reduction via a solution of the local spectral problem and use eigenvectors corresponding to the smallest eigenvalues as multiscale basis functions for the approximation on the coarse grid. For the transport problem, we construct multiscale basis functions for each interface between coarse grid cells and present additional basis functions to capture non-homogeneous boundary conditions on walls. Finally, we will present some numerical simulations for three test geometries for two and three-dimensional problems to demonstrate the method's performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.