Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Earnings Call and Stock Price Movement (2009.01317v1)

Published 23 Aug 2020 in q-fin.ST, cs.CE, cs.CL, and cs.LG

Abstract: Earnings calls are hosted by management of public companies to discuss the company's financial performance with analysts and investors. Information disclosed during an earnings call is an essential source of data for analysts and investors to make investment decisions. Thus, we leverage earnings call transcripts to predict future stock price dynamics. We propose to model the language in transcripts using a deep learning framework, where an attention mechanism is applied to encode the text data into vectors for the discriminative network classifier to predict stock price movements. Our empirical experiments show that the proposed model is superior to the traditional machine learning baselines and earnings call information can boost the stock price prediction performance.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.