Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

When Image Decomposition Meets Deep Learning: A Novel Infrared and Visible Image Fusion Method (2009.01315v2)

Published 2 Sep 2020 in eess.IV and cs.CV

Abstract: Infrared and visible image fusion, as a hot topic in image processing and image enhancement, aims to produce fused images retaining the detail texture information in visible images and the thermal radiation information in infrared images. A critical step for this issue is to decompose features in different scales and to merge them separately. In this paper, we propose a novel dual-stream auto-encoder (AE) based fusion network. The core idea is that the encoder decomposes an image into base and detail feature maps with low- and high-frequency information, respectively, and that the decoder is responsible for the original image reconstruction. To this end, a well-designed loss function is established to make the base/detail feature maps similar/dissimilar. In the test phase, base and detail feature maps are respectively merged via an additional fusion layer, which contains a saliency weighted-based spatial attention module and a channel attention module to adaptively preserve more information from source images and to highlight the objects. Then the fused image is recovered by the decoder. Qualitative and quantitative results demonstrate that our method can generate fusion images containing highlighted targets and abundant detail texture information with strong reproducibility and meanwhile is superior to the state-of-the-art (SOTA) approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.