Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Simple Global Neural Discourse Parser (2009.01312v2)

Published 2 Sep 2020 in cs.CL

Abstract: Discourse parsing is largely dominated by greedy parsers with manually-designed features, while global parsing is rare due to its computational expense. In this paper, we propose a simple chart-based neural discourse parser that does not require any manually-crafted features and is based on learned span representations only. To overcome the computational challenge, we propose an independence assumption between the label assigned to a node in the tree and the splitting point that separates its children, which results in tractable decoding. We empirically demonstrate that our model achieves the best performance among global parsers, and comparable performance to state-of-art greedy parsers, using only learned span representations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube