Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Uniform subspace correction preconditioners for discontinuous Galerkin methods with $hp$-refinement (2009.01287v1)

Published 2 Sep 2020 in math.NA and cs.NA

Abstract: In this paper, we develop subspace correction preconditioners for discontinuous Galerkin (DG) discretizations of elliptic problems with $hp$-refinement. These preconditioners are based on the decomposition of the DG finite element space into a conforming subspace, and a set of small nonconforming edge spaces. The conforming subspace is preconditioned using a matrix-free low-order refined technique, which in this work we extend to the $hp$-refinement context using a variational restriction approach. The condition number of the resulting linear system is independent of the granularity of the mesh $h$, and the degree of polynomial approximation $p$. The method is amenable to use with meshes of any degree of irregularity and arbitrary distribution of polynomial degrees. Numerical examples are shown on several test cases involving adaptively and randomly refined meshes, using both the symmetric interior penalty method and the second method of Bassi and Rebay (BR2).

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.