Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Accelerated reactive transport simulations in heterogeneous porous media using Reaktoro and Firedrake (2009.01194v2)

Published 17 Aug 2020 in cs.CE and cs.LG

Abstract: This work investigates the performance of the on-demand machine learning (ODML) algorithm introduced in Leal et al. (2020) when applied to different reactive transport problems in heterogeneous porous media. ODML was devised to accelerate the computationally expensive geochemical reaction calculations in reactive transport simulations. We demonstrate that the ODML algorithm speeds up these calculations by one to three orders of magnitude. Such acceleration, in turn, significantly accelerates the entire reactive transport simulation. The numerical experiments are performed by implementing the coupling of two open-source software packages: Reaktoro (Leal, 2015) and Firedrake (Rathgeber et al., 2016).

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.