Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PANE: scalable and effective attributed network embedding (2009.00826v2)

Published 2 Sep 2020 in cs.SI

Abstract: Given a graph G where each node is associated with a set of attributes, attributed network embedding (ANE) maps each node v in G to a compact vector Xv, which can be used in downstream machine learning tasks. Ideally, Xv should capture node v's affinity to each attribute, which considers not only v's own attribute associations, but also those of its connected nodes along edges in G. It is challenging to obtain high-utility embeddings that enable accurate predictions; scaling effective ANE computation to massive graphs pushes the difficulty of the problem to a whole new level. Existing solutions largely fail on such graphs, leading to prohibitive costs, low-quality embeddings, or both. This paper proposes PANE, an effective and scalable approach to ANE computation for massive graphs that achieves state-of-the-art result quality on multiple benchmark datasets. PANE obtains high scalability and effectiveness through 3 main algorithmic designs. First, it formulates the learning objective based on a novel random walk model for attributed networks. Second, PANE includes a highly efficient solver for the above optimization problem, whose key module is a carefully designed initialization of the embeddings, which drastically reduces the number of iterations required to converge. Finally, PANE utilizes multi-core CPUs through non-trivial parallelization of the above solver, which achieves scalability while retaining the high quality of the resulting embeddings. The performance of PANE depends upon the number of attributes in the input network. To handle large networks with numerous attributes, we further extend PANE to PANE++. Extensive experiments, comparing 10 existing approaches on 8 real datasets, demonstrate that PANE and PANE++ consistently outperform all existing methods in terms of result quality, while being orders of magnitude faster.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.