Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Non-asymptotic Identification of Linear Dynamical Systems Using Multiple Trajectories (2009.00739v3)

Published 1 Sep 2020 in math.OC, cs.SY, eess.SY, and math.DS

Abstract: This paper considers the problem of linear time-invariant (LTI) system identification using input/output data. Recent work has provided non-asymptotic results on partially observed LTI system identification using a single trajectory but is only suitable for stable systems. We provide finite-time analysis for learning Markov parameters based on the ordinary least-squares (OLS) estimator using multiple trajectories, which covers both stable and unstable systems. For unstable systems, our results suggest that the Markov parameters are harder to estimate in the presence of process noise. Without process noise, our upper bound on the estimation error is independent of the spectral radius of system dynamics with high probability. These two features are different from fully observed LTI systems for which recent work has shown that unstable systems with a bigger spectral radius are easier to estimate. Extensive numerical experiments demonstrate the performance of our OLS estimator.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)