Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Deep 2-Dimensional Dynamical Spiking Neuronal Network for Temporal Encoding trained with STDP (2009.00581v1)

Published 1 Sep 2020 in cs.NE, cs.AI, and cs.CV

Abstract: The brain is known to be a highly complex, asynchronous dynamical system that is highly tailored to encode temporal information. However, recent deep learning approaches to not take advantage of this temporal coding. Spiking Neural Networks (SNNs) can be trained using biologically-realistic learning mechanisms, and can have neuronal activation rules that are biologically relevant. This type of network is also structured fundamentally around accepting temporal information through a time-decaying voltage update, a kind of input that current rate-encoding networks have difficulty with. Here we show that a large, deep layered SNN with dynamical, chaotic activity mimicking the mammalian cortex with biologically-inspired learning rules, such as STDP, is capable of encoding information from temporal data. We argue that the randomness inherent in the network weights allow the neurons to form groups that encode the temporal data being inputted after self-organizing with STDP. We aim to show that precise timing of input stimulus is critical in forming synchronous neural groups in a layered network. We analyze the network in terms of network entropy as a metric of information transfer. We hope to tackle two problems at once: the creation of artificial temporal neural systems for artificial intelligence, as well as solving coding mechanisms in the brain.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube