Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysis of memory in LSTM-RNNs for source separation (2009.00551v1)

Published 1 Sep 2020 in eess.AS and cs.SD

Abstract: Long short-term memory recurrent neural networks (LSTM-RNNs) are considered state-of-the art in many speech processing tasks. The recurrence in the network, in principle, allows any input to be remembered for an indefinite time, a feature very useful for sequential data like speech. However, very little is known about which information is actually stored in the LSTM and for how long. We address this problem by using a memory reset approach which allows us to evaluate network performance depending on the allowed memory time span. We apply this approach to the task of multi-speaker source separation, but it can be used for any task using RNNs. We find a strong performance effect of short-term (shorter than 100 milliseconds) linguistic processes. Only speaker characteristics are kept in the memory for longer than 400 milliseconds. Furthermore, we confirm that performance-wise it is sufficient to implement longer memory in deeper layers. Finally, in a bidirectional model, the backward models contributes slightly more to the separation performance than the forward model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.