Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Direct CMOS Implementation of Neuromorphic Temporal Neural Networks for Sensory Processing (2009.00457v1)

Published 27 Aug 2020 in cs.AR, cs.ET, cs.LG, and cs.NE

Abstract: Temporal Neural Networks (TNNs) use time as a resource to represent and process information, mimicking the behavior of the mammalian neocortex. This work focuses on implementing TNNs using off-the-shelf digital CMOS technology. A microarchitecture framework is introduced with a hierarchy of building blocks including: multi-neuron columns, multi-column layers, and multi-layer TNNs. We present the direct CMOS gate-level implementation of the multi-neuron column model as the key building block for TNNs. Post-synthesis results are obtained using Synopsys tools and the 45 nm CMOS standard cell library. The TNN microarchitecture framework is embodied in a set of characteristic equations for assessing the total gate count, die area, compute time, and power consumption for any TNN design. We develop a multi-layer TNN prototype of 32M gates. In 7 nm CMOS process, it consumes only 1.54 mm2 die area and 7.26 mW power and can process 28x28 images at 107M FPS (9.34 ns per image). We evaluate the prototype's performance and complexity relative to a recent state-of-the-art TNN model.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.