Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep unsupervised learning for Microscopy-Based Malaria detection (2009.00197v1)

Published 1 Sep 2020 in eess.IV and q-bio.QM

Abstract: Malaria, a mosquito-borne disease caused by a parasite, kills over 1 million people globally each year. People, if left untreated, may develop severe complications, leading to death. Effective and accurate diagnosis is important for the management and control of malaria. Our research focuses on utilizing machine learning to improve the efficiency in Malaria diagnosis. We utilize a modified U-net architecture, as an unsupervised learning model, to conduct cell boundary detection. The blood cells infected by malaria are then identified in chromatic space by a Mahalanobis distance algorithm. Both the cell segmentation and Malaria detection process often requires intensive manual label, which we hope to eliminate via the unsupervised workflow.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.