Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Framework For Contrastive Self-Supervised Learning And Designing A New Approach (2009.00104v1)

Published 31 Aug 2020 in cs.CV and cs.LG

Abstract: Contrastive self-supervised learning (CSL) is an approach to learn useful representations by solving a pretext task that selects and compares anchor, negative and positive (APN) features from an unlabeled dataset. We present a conceptual framework that characterizes CSL approaches in five aspects (1) data augmentation pipeline, (2) encoder selection, (3) representation extraction, (4) similarity measure, and (5) loss function. We analyze three leading CSL approaches--AMDIM, CPC, and SimCLR--, and show that despite different motivations, they are special cases under this framework. We show the utility of our framework by designing Yet Another DIM (YADIM) which achieves competitive results on CIFAR-10, STL-10 and ImageNet, and is more robust to the choice of encoder and the representation extraction strategy. To support ongoing CSL research, we release the PyTorch implementation of this conceptual framework along with standardized implementations of AMDIM, CPC (V2), SimCLR, BYOL, Moco (V2) and YADIM.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.